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Abstract

Theorem-Prover (TP) based educational mathematics systems are able to cover all phases
of stepwise problem solving, a TP checks user-input most generally and reliably; an additional
feature is the ability to know the next step towards a solution. However, just presenting the next
step is not motivating for the learner; so adaptive user guidance is required.

This paper describes a general approach to adaptive user guidance resulting from an in-
terdisciplinary cooperation between Computer Mathematics and Cognitive Science. The former
provides technologies for capturing a general notion of error-pattern and for general services
to be used for user guidance by a dialogue component. The latter, Cognitive Science, addresses
the dialogue component providing user guidance. After a brief review of guiding principles for
learning an, architecture for the dialogue component in a prototype is presented. The interac-
tions between mathematics engine, dialogue component and front-end are described as rules of a
knowledge-based expert system.

The prototype is described to an extent which gives a proof of concept for both, the feasibility
of general error-patterns in terms of Computer Mathematics as well as appropriateness of the
respective services for adaptive user guidance in terms of Cognitive Science.

1 Introduction
This is a case study from an interdisciplinary cooperation between Cognitive Science and Computer
Mathematics. The latter is involved by an experimental mathematics assistant, called ISAC 1, which is
based on the Theorem Prover (TP) Isabelle [NPW02]. This assistant is designed as ”a model of math-
ematics” [Neu] for experiments in interactive learning mathematics, comparable to learning chess by
use of an interactive chess program — learning by trial and error augmented with the feature of a
”transparent system”, i.e. the possibility to ”look to the justifications from TP and to the underlying
mathematics knowledge” — a design which bypassed a wealth of experiences from the science of

1http://www.ist.tugraz.at/projects/isac/ and http://www.ist.tugraz.at/isac/
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mathematics education and Cognitive Science, experiences which shall not be missed in an upcoming
generation of TP-based educational mathematics assistants [Neu10].

In particular, Cognitive Science provides theories on cognitive activities, on learning and on design
of educational tools. From this side, the interdisciplinary cooperation is still at the beginning and
limited to a concrete goal: find ways to exploit the general and powerful TP-technology for adaptive
user-guidance. This early state of cooperation is determined by a lack of systematic approach to
software design in terms of Cognitive Science. For instance, the case study side steps the notion
of ”misconception” — the ”error-patterns” in the paper at hand are an ad-hoc approach and are not
consistently related to the large body of knowledge in the respective literature of misconception in
mathematics learning, on Piaget’s or Vygotsky’s theories, etc.

The structure of the paper is as follows: §1 is followed by an introduction of notions from Com-
puter Mathematics in §2 in order to make the paper self-contained: §2.1 briefly explains the technol-
ogy which provides services for “Next-Step-Guidance”, §2.2 defines error-patterns and related notions
in and concludes with a proof for a certain technological improvement triggered by the case study.
§3 describes the approach from the side of Cognitive Science: after briefly laying down the frame-
work for approaching mathematics education in §3.1, §3.2 gives the motivation for the case study and
formulates the goal for adaptive user-guidance researched in this paper, §3.3 shows concrete example
dialogues implemented in the prototype within the case study. How these dialogues exploit the ser-
vices from Computer Mathematics is shown in §3.4 and in §3.5. The experiences gained during the
case study suggest further research and development in §4, before a final conclusion is given in §5.

2 Computer Mathematics: Error-Patterns & Co.
This section presents the computer mathematics underlying next-step-guidance and error-patterns;
the presentation is as brief as possible but sufficient for re-implementation. A second goal of this
section is to present a proof, that error-patterns improve next-step-guidance — i.e. that the former,
error-patterns, requested from the side of Cognitive Science, luckily leads to an improvement of the
latter, next-step-guidance, within Computer Mathematics. For that proof some technicalities need
to be introduced, where the three central definitions are given in detail and other prerequisites are
introduced using a running example.

The running example is simplification of arbitrary rational terms 2, with an arbitrary number of
different variables, in particular simplification of the term 5x

4y
+ 3x

4y
. This term (and all other rational

terms) are simplified by a program which might look as follows in the ISAC prototype.

01 Program simplify_Rational (term::rat) =
02 LET
03 t = TRY (Rewrite_Set prepare) term;
04 t = REPEAT
05 (Rewrite_Set multiply_divide) OR
06 (Rewrite_Set expand_parentheses) OR
07 (Rewrite_Set collect_numerals) OR
08 (Rewrite_Set reduce_0_1_2) OR
09 (Rewrite_Set add) OR

2In the sequel “term” and “formula” will be used interchangeably.
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10 (Rewrite_Set cancel) t
11 IN
12 TRY (Rewrite_Set beautify) t

The above Program implements the functionality of a canonical simplifier [BN98] in Computer
Algebra in full generality: The program takes a term as argument, prepares the term by execution
of the statement Rewrite Set (which replaces binary minus− in 2 ·x− 3·x

4·x →prepare 2 ·x+ −3·x
4·x ,

for instance 3), REPEATs applying one set of rules (by Rewrite Set) OR another set as long as one
of them is applicable. Finally beautify is applied, which re-introduces −, for instance. More
details about the syntax can be found in [HKN10].

Interpreting this program in a specific way called “Lucas-Interpretation”, generates a calculation
close to paper and pencil calculations, also provides the services for next-step-guidance and, as in-
troduced in this paper, detects error-patterns — how this is accomplished, is concern of the following
section.

2.1 “Next-Step-Guidance” from Lucas-Interpretation
Lucas-Interpretation executes a program from break-point to break-point; in the example program the
break-points are Rewrite Set. At the break-points specific services are available, when control
is handed over to the dialogue; for instance, a next term can be added to the calculation created by
interpretation of a statement in the program.

Below, both Lucas-Interpreter and a calculation, are modeled as “labeled terminal transition sys-
tems (TTS)” [Plo81]. During interpretation of a program m the transitions→m go from break-point
to break-point, here called tactics as usually in TP. In a calculation the transitions→ are tactics as
well, here responsible for promoting a calculation from the existing formulas to a next formula 4.

For instance, tactic Rewrite Set prepare in line 03 promotes a calculation by replacing all
binary minus by unary minus, while nothing is said where the tactic comes (from input by the user
or from execution of the program). →m is definitely done by execution of statement Rewrite Set
prepare in the program, so→ and→m are equivalent with respect to the outcome in a calculation
and semantics in term of logics, but they differ in technical details (for instance, in the source formulas
come from to apply tactic at: the calculation or the interpreter’s environment).

Transitions → and →m being semantically equivalent, however, does not mean that there is a
one-to-one correspondence in the number of transitions in a calculation and in interpretation. If
we apply the program of the running example to the term 5x

4y
+ 3x

4y
, Rewrite Set prepare is

not applicable and due to TRY skipped such that the calculation is not promoted (without TRY, the
not-applicable Rewrite Set prepare would throw an exception). Then, interpretation of OR
selects Rewrite Set add and REPEATs as long as one rule-set is applicable. Thus, given several
+ in a term, Rewrite Set addwould REPEATedly promote the calculation. Also Rewrite Set
beautify is skipped for the same reason as above.

The states of a calculation c in Def.1 below comprise formulas P(F ) shown to the user and
contexts X . The latter are usually not shown to the learner; they store logical data required by provers
for checking input and for allowing to prove correctness of output, finally.

3Replacing binary minus avoids exponential blowup in the number of rewrite-rules for addition (and subtraction).
4Here the semantics of the tactics is defined such that they ensure logical consistency.
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The TTS for Lucas-Interpretation operates on states comprising the states of the respective cal-
culation plus program states Γ of the interpreted program; Γ comprises environments and locations
in the program, as usual. Details about the terminal states, S and Sm respectively, can be found
in [Neu12]. There is also a definition of specification, which comprises in/output items and pre/post-
conditions, as usual. The predicate initialized by s,m concerns initialization for steps of interpreta-
tion by a specification s and a program m (thus relating logics and computation); the respective defini-
tion (Def.5 in [Neu12]) is separated in order to shorten the central definition of Lucas-Interpretation.

Lucas-Interpretation provides three basic services for the dialogue, which are more or less directly
based on TP; the first service is to “know the next step”, Def.6 in [Neu12]:

Definition 1 (Lucas-Interpreter) Given a specification s, a calculation c = 〈X,P(F ), T,→, S〉
and a program m, then a labeled terminal transition system L = 〈Ξ, Tm,→m, Sm〉 is called a Lucas-
Interpreter iff

(i) the configuration Ξ = (Γ×X ×P(F )) contains Γ the program states, X a set of contexts and
P(F ) a set of sequences F of formulas, the latter two forming the configuration of calculation c

(ii) the actions Tm contain (program) tactics in m and Tm is bijectively mapped with T

(iii) the transition relations→tm are steps of interpretation with γ, x, F →tm γ′, x′, F ′, functional
with unique γ′, x′, F ′, the steps are initialized by s,m.

(vi) the terminal configurations Sm ⊂ (Γm ×X × P(F )) contain Γm the terminating states of m.

We say c is generated by (s,m,L).

The above transition system differs from standard program interpretation in the (i) configuration
extended by contexts X and formulas P(F ) dedicated to the rules of logic in a separate definition
(see Def.3 in [Neu12]).

In a straightforward manner the (ii) actions are tactics Tm in the program m, Rewrite Set for the
running example; these tactics are essentially the same as those available to the user, see Def.2 below.
So in (iii) transition relation→tm is related to a tactic tm like Rewrite Set. Tactic tm can update the
context, for instance applying the rule c 6= 0⇒ a·c

b·c = a
b

updates context x with c 6= 0 to context x′.
(vi) terminal configurations are related to the post-condition of specification s and are not ad-

dressed in this paper.

Checking an input tactic is the second TP-based service in Lucas-Interpretation. The tactic can be
input by the student directly or by the dialog in the course of user-guidance. The following definition
describes how Lucas-Interpretation handles the input of a tactic tI ; the definition re-uses the predicate
c is generated by (s,m,L) from Def.1 above:

Definition 2 (Locatable tactics) Given a specification s, a program m, a Lucas-Interpreter L =
〈Ξ, Tm,→m, Sm〉 at configuration χ = (γ, x, F ) ∈ Ξ, a calculation c with c is generated by (s,m,L)
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at configuration (x, F ) and finally given an (external) tactic tI input by the learner, then we have the
rule

tI applied to (x, F ) = (x′, F ′) γ, x, F →∗ γ′, x, F →tm γ′′, x′, F ′ tI ≈ tm
γ, x, F →tm γ′′, x′, F ′

If the rule is applicable (in particular if for tI an equivalent tm in the program is found, tI ≈ tm), we
say ’t is locatable at χ’ iff applicable; otherwise we say L is helpless at χ.

The definition’s rule has tI applied to (x, F ) as premise; this premise concerns applicability of tactic
tI , which in turn relates tI to the formulas F in calculation c and the respective logical context x;
see Def.2 in [Neu12]. If the premise is given, we get a step of calculation c leading to x′, F ′, but if
no tI ≈ tm (a respective tactic tm in program m) is found during interpretation, we don’t get a γ′′, a
program state to resume interpretation form — L is helpless, no next step can be found anymore.

Note that the transitions→∗ · · · →t searching for tI ≈ tm only change the program state γ and
not the configuration x, F of the calculation; so x′, F ′ resulting from tI is presented to the user, before
control is handed over. This behavior is consistent with transitions being functions and not relations
in Def.1. And the strategy implemented by Def.2 works particularly well with programs like the
example on p.177.

Checking an input formula concerns the third basic TP-service offered to dialogue guidance. The
following definition describes how Lucas-Interpretation handles an input formula fI :

Definition 3 (Derivable formula) Given a specification s, a program m, a Lucas-Interpreter L =
〈Ξ, Tm,→m, Sm〉, a calculation c with c is generated by (s,m,L) at configuration x, F as part of
configuration χ of L and finally given a formula fI input by the learner, then we have the rule

γ, x, F →∗ γ′, x′, F ′ F `x′ fI
γ, x, F →t∗ γ′, x′, FI

If the rule is applicable we say ’fI is derived from χ’; otherwise we say ’fI is not derivable from χ’.

In this case the interpreter executes the next tactics found in program m until a context x′ is generated,
which can justify the input fI , i.e. c `x′ fI . This justification might involve algebraic simplification
as shown in the example program on p.177. If successful, the step is presented to the user, before
control is handed over; t∗ is a tactic called “ad-hoc derivation”; it usually comprises a sequence of
tactics.

If not successful, i.e. the interpreter executes program m until termination and no step is found
with c `x′ fI , then fI is “not derivable”. This judgment can be costly in resources, since it relies on
an (internal) computation of the program, including all the subprograms, until termination.

The difficulties for Lucas-Interpretation from user-input as shown in Def.2 and Def.3 are compara-
ble to difficulties a debugger has: which kinds of user input allow to resume execution/interpretation?
§2.3 will give a specific positive answer to this questions with respect to Lucas-Interpretation.
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2.2 Error-Patterns and Fill-Patterns
This paper is interested in errors students make when transforming formulas in (symbolic) calcula-
tions, which is called “term- rewriting” [BN98]. Here we give a brief introduction to this technique
as a prerequisite for subsequent definitions. The technique uses specific theorems: the theorems are
equalities (with optional assumptions), are interpreted from left to right and called rewrite-rules. For
instance given the theorem c 6= 0 ⇒ a

c
+ b

c
= a+b

c
and the term 5·x

4·y + 3·x
4·y , rewriting the term with the

theorem is

5 · x
4 · y

+
3 · x
4 · y

−→c 6=0⇒a
c
+ b

c
=a+b

c

5 · x+ 3 · x
4 · y

with the result under the assumption 4 · y 6= 0. Rewrite-rules constitute rule-sets; if they have unique
normal-forms, i.e. a form which cannot be simplified further, the rule-sets are called (canonical)
simplifiers. For a simplifier s we write, for instance(

5 · x+ 3 · x
4 · y + 4 · y

)
↓s =

x

y

with ↓ denoting the normal-form x
y
; readers might convince themselves that x

y
is equivalent to 5·x+3·x

4·y+4·y
modulo the usual simplifiers for rationals.

Definition 4 (Error-Pattern) Given a triple (id , P, R) with id a string called identifier, P a set of
terms with equality called patterns and R a set of rewrite-rules, this triple is called an error-pattern
iff

(i) ∀p ∈ P. ∃r ∈ R. match (lhs(p), lhs(r)) 6= ∅. This r is called the rule belonging to p

(ii) ∀r ∈ R. ∃p ∈ P. match (lhs(p), lhs(r)) 6= ∅

The above definition uses the function match as described in [BN98]: the both left-hand sides lhs are
compared with respect to their term structure.

And this is an example for detecting an error-pattern: Given the formula on the left-hand-side
below we assume the formula on the right-hand-side is input by a student

5 · x
4 · y

+
3 · x
4 · y

=
5 · x+ 3 · x
4 · y + 4 · y

where the components of the fraction are mistaken for components of a vector. However, a student
needs not input the above exact right-hand-side, but for instance

5 · x
4 · y

+
3 · x
4 · y

=
8 · x
8 · y

or even = x
y
. With this variety of possible input in mind we use ↓ in the following definition.
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Definition 5 (Error-Pattern detected) Given a calculation c = 〈X,P(F ), T,→, S〉 at configura-
tion (x, F ) ∈ X ×P(F ) with formula f in F , an error-pattern ε = (id , P, R), a canonical simplifier
↓s and an “input” formula fI then we say:

’at (x,F) ε is detected for fI’ iff ∃p ∈ P. (f →p) ↓s = fI ↓s.

If less precision is acceptable, we say “the error-pattern is detected” and omit the at and for. The
definition says: An error-pattern is detected if one of the patterns simplified equals the input simpli-
fied. In the case of fractions the simplifier would create a normal form with one fraction line and fully
canceled. The ∃ in the definition is computationally expensive: no error-pattern detected requires all
patterns p ∈ P to be checked.

So far nothing has been said about the purpose of the R in an error-pattern ε = (id , P, R). The
rewrite-rules in R provide a service to the dialogue when helping the student out of an error-pattern:
the p ∈ P directs to a rewrite-rule applicable to the “current” formula (see Def.5), and rewrite-rules
can be associated with fill-patterns:

Definition 6 (Fill-Pattern) Given a rewrite-rule r and an ordered set (enumerable byN , the natural
numbers) of triples φ = {φi. 1 ≤ i ≤ n ∈ N ∧ φi = (id i, pi,Pi(id ε))}, where id i is a string called
identifier, pi a term with equality called fill-in-pattern and Pi(id ε) a set of error-patterns’ identifiers,
such a set is called a fill-pattern of r iff

(i) ∀i. 1 ≤ i ≤ n⇒ lhs(pi) = lhs(r)

(ii) ∀i. 1 ≤ i ≤ n⇒ match(rhs(pi), rhs(r)) 6= ∅ and the lhs(pi) “contain less place-holders with
growing i”

For terms f and fI we say ’fI is filled into φ ’ iff f →r fI .

The third component of a fill-pattern’s element, Pi(id ε) is planned for further services not discussed
in this paper: Given fill-patterns, these can be retrieved from the error-pattern due to (i) in Def.4 by a
dialogue-service findFillpatterns; from these patterns the dialogue can select an appropriate one (see
(ii) in Def.6) and call the service requestFillformula; the fill-formula has some placeholders to fill-in,
and the service inputFillFormula enforces fI is filled into φ.

In order not to loose the focus on techicalities, here are no examples given for detection of error-
patterns and on fill-patterns. Such examples are better understood in the context as introduced by
Cognitive Science, so instead forward references here there will be backward references from the
educational context in §3.4.

2.3 Next-Step-Guidance is Sustained
Error- and fill-patterns extend the scope of reliable operation within Lucas-Interpretation: user input
can make the interpreter go astray, according to Def.2 it can become “helpless” and according to
Def.3 a term can be “not derivable”. In the latter case, even if an input term is “derivable”, it is even
possible that the last tactic in the derivation is not “locatable”, next-step-guidance can not continue
— while error- and fill-patterns guarantee “locatability” in this case and thus guarantee sustained
next-step-guidance, as the following lemma states.
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Lemma 7 (Error-pattern sustains next-step-guidance) Given a specification s, a program m, a
Lucas-Interpreter L = 〈Ξ, Tm,→m, Sm〉 at configuration χ = (γ, x, F ) ∈ Ξ, a calculation c with
c is generated by (s,m,L) and an error-pattern ε = (id , P, R). Then the statement holds:

If all r ∈ R are also in a rule-set in m “reachable from program state γ” 5, then
at (x, F ) ε is detected for fI =⇒ tr is locatable at χ

where tr is the tactic applying r.

Proof. According to Def.5 at (x, F ) ε is detected for fI means that there is an f in F and
∃p ∈ P which has a redex in f . Def.4(i) says that there exists a rewrite-rule r belonging to p,
thus r has a redex in f as well. So the first premise in Def.2 is fulfilled by the tactic tr applying r:
tr applied to (x, F ) = (x′, F ′).
The second premise γ, x, F →∗ γ′, x, F →tm γ′′, x′, F ′ is fulfilled by two steps. First→∗ is ensured
because there is still a redex in f , i.e. the normal form has not yet been reached and because the
lemma’s assumption states that r is in a “reachable” rule-set, say rs, too — so r must be applicable
also within rs.
The second step is simply γ, x, F →tr γ′′, x′, F ′ with tr ≈ tm, where tm is the same rewrite-rule r
found in program m. Since all premises in Def.2 are fulfilled, tr is locatable at χ.

The lemma’s assumption gives an important hint on how to design the relation between error-
patterns and programs.

3 Cognitive Science: Dialogue Guidance & Co.
This section is a ”tour de force” in brevity for a Cognitive Science approach to educational math-
ematics software; after a brief overview, §3.2 gives the motivation for the case study and identifies
a particular question crucial for mathematics learning, §3.3 selects an example used throughout the
paper, §3.4 connects to the Computer Mathematics from §2 above focusing this example, and §3.4,
§3.5 present the implementation of the example in the prototype’s dialogue module.

3.1 Cognitive Science Approaching Mathematics Education
Cognitive science is relatively new in the field of mathematics education. It claims, that mathematics
is a product of adaptive human activities, grounded and embodied in everyday cognitive mechanism,
involving the process of abstraction, and that mathematical ideas are quite stable for about hundred
years [Nun04]. There is a cognitive gap between algebra and arithmetic: the brains of humans, and
also of animals, has some innate arithmetic, the so called number sense [Bob96] and [Gel78].

The following questions arise when we take human cognition into consideration in the field of
computer supported learning: What is the object of our investigation (what is mathematics [Nun04]),
how do people learn and understand mathematics (involving questions about mathematical abstrac-
tion [Dre90]), and how does mathematics learning and teaching work in a computer-based learning
environment. It is important to think of the cognitive processes and involve them in the design for a
software which fits the way human are thinking. Thus software shall adapt to the thinking processes,

5Formal treatment of “reachability” is out of scope, but “obvious” within a canonical simplifier, see the program on
p.176 and the proof.
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and not vice versa, the human would have to adapt to the software. To reach this goal we would need
to identify what is important in the learning and teaching process, and how we can answer such an
interdisciplinary questions, involving both computer science and human cognition.

However, answering all these questions goes beyond the scope of our paper, but as general guide-
lines, ISAC’s design addresses the following issues: individual learning and thinking at different levels
of knowledge, support for stepwise calculation within a selected problem class and feedback involving
the learner into interaction. Furthermore blended learning environments engage teachers and broader
social environments. It is very important in the process of teaching mathematics with a computer
software, that the software gives feedback, reflects on errors [Col06], and provides ”answers” in form
of hints when needed.

The process of learning mathematics is often bound to emotions like anxiety and frustration
[Hem90], when learners conduct error, especially when the missing knowledge in a single domain
influences overall mathematical skills. According to [Bro78]”Errors are made because certain com-
ponent is missing” and found to be quite pattern like, and depend on complex factors: procedural
knowledge, incorrect strategies, mental representation of variables, explanations of teachers, learning
environment..etc. According to [Pay90]: ”achieving a ”cognitive diagnosis” of a learners error may
be an important step towards meaningful invidiualized tutoring” we focused on identifying error pat-
terns, hints necessary to be detected in order to support learners. However in adaptive user quidance
not only the detection is very important, but also the balanced individual feedback. “Balanced” means
to give that amount of information learners need to accomplish a current challenge, and not more —
accomplishment motivates to tackle the next step in the course of learning by doing.

3.2 Recurring Errors in Mathematics
Scanning the various aspects and challenges in mathematics learning from the side of Cognitive Sci-
ence as mentioned above, and scanning the potential of “next-step-guidance” from the side of Com-
puter Mathematics as described in §2, we identified the following issue as particularly promising to
tackle from both sides:

Introduction of integration in a calculus course, for instance, captures all attention for advanced
concepts and procedures like limit and infinitesimal quantities; however, integration builds upon
arithmetic and algebra like addition of fractions, for instance — so frustration might be caused, if
errors from the basic level, e.g. in adding fractions, recur on the current level of integration and
inhibit success in learning (frustration for both, teachers and students, because individual tutoring is
limited in classes).

As mentioned above, lessons cannot easily be structured alongside errors, errors occur individu-
ally for each student from a large, but finite set of error-patterns as mentioned above, while a teacher
hardly can satisfy the individual requests. So the following goal has been established for the case
study:

Generalise automated generation of user-guidance
with concurrent detection of errors

recurring during systematic build-up of mathematics.

Automated generation of user-guidance is successfully accomplished in several tutoring systems,
in particular for tutoring symbolic computation of fractions:
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Tutors like [And08, MS04] implement powerful generation of adaptive user-guidance in several
aspects, in particular in their reaction to erroneous input during stepwise calculation. The power of
this kind of tutors results from their conception which addresses modeling mental processes — which,
however, causes multiple efforts, when dealing with basic errors recurring in advanced procedures;
the respective software structure does not reflect the systematic buil-up of mathematics.

Also, tutors based on the concepts of Computer Algebra like [RMD+05, Bee92] very efficiently
create user-guidance in stepwise calculation. However, this kind of systems lack logical foundations
to combine several procedures of Computer Algebra. The incapability in combining several proce-
dures carries over to error-handling in more complex mathematics problems, for instance in advanced
problems in applied mathematics.

Additional to the features of these kinds of tutors, the general technology introduced in §2 is able
to model the systematic build-up of mathematics and re-uses elementary procedures for implementing
advanced procedures. So, for instance, a program for tutoring integral transformations [Roč] re-uses
the procedure for simplification of fractions, and thus makes all the machinery dealing with errors on
fractions available also within the advanced topic.

3.3 Example Dialogues for Fractions
For the case study described in this paper there was, in principle, free choice for all domains of mathe-
matics. In fact the choice was limited to the domains already implemented in the ISAC prototype. The
choice for the domain of fractions has good reasons: Learning in this domain causes well-researched
difficulties [Kie90], comprehending fractions involves complex cognitive abilities, one can vary the
form of them, e.g. from a mixed form 23

5
to 13

5
or 2.6, one can carry out different operations (addition,

multiplication, etc.). Also, fractions establish relationship between two numbers, involve multiple
representation (proportion, linear change, simple value, etc). However, it is not a question in this
paper how students develop these representations, rather the goal is to develop an interactive dialogue
between a learner and software [RAKC07].

In such a dialogue we should react on what the student is doing. For that purpose we need to
collect information about the students action. In ISAC this is information the learner is looking up, the
formula he/she is typing in during calculation. This formula might be correct or incorrect. In the case
of a correct formula, there is not much to do, in the case of an incorrect formula we can give feedback.
As mentioned in the introduction of §3 the interaction is based on reflection, and giving hints if the
learner requests for.

The case of input of an incorrect formula shown in the screen-shot Fig.1 will be the running
example for the sequel: In Fig.1, as a feedback for the (incorrect) input 8·x

8·y , a “hint-page” popped
up with the hint "This is not the correct way of addition. Please look up here

!". Since ISAC uses HTML technology, dialog authors will be free to exploit the ever increasing
features of HTML. In the right upper corner Fig.1 indicates buttons changing during the subsequent
interactions.

The running example will proceed from the situation in Fig.1 to interactions, where the learner
requests more help and the software presents “fill-forms” with place-holders to be completed by the
learner: ..+..

..
, ..+..

4y
, or 5x+..

4y
.

Tab.1 shows the situation in Fig.1 in lines 00..02. Line 03 assumes the learner pushing the
HELP button appearing instead of NEXT and AUTO (which would allow to request the next step
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Figure 1: ISAC’s front-end with incorrect input (red ⊗ icon in the Worksheet).

or even the final result from the system). Lines 04..05 show the fill-form requested by the learner,
but not filled correctly. So in line 06 the system presents the tactics applying a

c
+ b

c
= a+b

c
which

leads to a correct input by the learner finally. rule 1-4 in the right-most column will be discussed
§3.5.

3.4 Error-Patterns, Rewrite-Rules and Fill-Forms
This section describes how the prototype detects the error-pattern above and how the prototype uses
fill-patterns to provide services for adaptive user-guidance.

no. student’s action user-interface system’s action dialogue-rule
00 5x

4y
+ 3x

4y
=

01 types in −→ 8x
8y

02 hint page 1 ←− pops up rule 1

03 hit help button −→ ..+..
..

= ←− show fill-form rule 2
04 hit help button −→ ..+..

4y
= ←− next fill-form rule 3

05 hit help button −→ 5x+..
4y

= ←− next fill-form rule 3

06 hit help button −→ Tactics ←− no more fill-form rule 4
07 types in −→ 8x

4y
correct

. . .

Table 1: Interactions for EP “add-fractions”
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Error-patterns are those introduced by Def.4 in §2.2. Before the implementation is described,
we consider design issues, because there is for instance an abundance of learners’ errors concerning
fractions described in the literature. Many of them have been experienced by the authors as well. They
compiled a long list of such errors, which then were separated into groups. Assignment to respective
groups was done such that one specific class of feedback can be related to each group. Such specific
feedback is the hint-page in Fig.1. These are the groups identified within this case study:

1. Addition a
c
+ b

c
= a+b

2·c , a
b
+ c

d
= a+c

b+d
, a
b
+ c

d
= a·c

b·d , a+ b
c
= a+b

c
, a+ b

c
= a·b

c

2. Multiplication: a
c
· b
c
= a·b

c
, c
a−b
· d
c
= c·d

a−b·c , a
b
· c
b
= a+c

b

3. Division:a
b
÷ c

d
= a·c

b·d ,a
b
÷ c

d
= a÷c

b·d

4. Cancellation of Fraction: a+b
a+c

= b
c
, a+b

a
= b, a·c+b

a
= b+ c, a+bx

c+dx
= a+b

c+d

5. Changing between forms: a b
c
= a+b

c
, a b

c
= a·d+b

c

6. Special cases with 0: b
c
− a

c
= b−a

0
, a
a
= 0

7. Special cases with 1 or (-1): a−b
b−a

= 1, − a
−a

= −1

8. Binomial forms: a−b
a2−b2

= a− b, (a− b)2 = a2 − b2, (a+ b)2 = a2 + b2

These groups are result of several design decisions. For instance, both groups no.1, addition, and no.2,
multiplication, address multiplication and addition: addition can be confused with multiplication or
vica versa, so a dialog author has to decide where a certain error fits better.

The decision for the case study appears in the implementation of the error-pattern in ISAC’ math-
ematics engine. The latter is implemented in SML [MTHM97] (as is the underlying TP Isabelle); the
implementation of group no.1, addition, in SML is as follows:

01 val errpats =
02 [("add-fractions",
03 [parse_patt thy "(?a / ?c + ?b / ?c) = (?a + ?b)/(?c + ?c)",
04 parse_patt thy "(?a / ?b + ?c / ?d) = (?a + ?c)/(?b + ?d)",
05 parse_patt thy "(?a / ?b + ?c / ?d) = (?a * ?c)/(?b * ?d)",

06 parse_patt thy "?a + (?b /?c)= (?a + ?b)/ ?c",
07 parse_patt thy "?a + (?b /?c)= (?a * ?b)/ ?c"],

08 [@{thm rat_add1}, @{thm rat_add2}, @{thm rat_add3}])]: errpat list;

According to Def.4 an error-pattern is a triple: The first element is the identifier id, above
"add-fractions"; the second element are a list of patterns p, above [parse patt thy "(?a /

?c + ?b / ?c) = ..., ...] ([] indicate lists); the third element is a list of rewrite-rules, above
[@thm rat add1, ...]. The latter is syntax of Isabelle, addressing the theorem with identifier
rat add1. The ? above indicate a kind of variable which can take other values; this kind of variable
allows to detect error-patterns.

In Tab.1 on p.185 the error is detected according to Def.5: the formula 5·x
4·y +

3·x
4·y on line 00 in Tab.1

matches the left-hand-side (lhs) of the pattern in line 03 above. The match is possible because of the
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?variables: these are mapped to respective values ?a → 5 · x, ?c → 4 · y, ?b → 3 · x. With this map
the right-hand-side (rhs) of the pattern in line 03 above is instantiated to 5·x+3·x

4·y+4·y ; and this rhs equals
the incorrect input 8·x

8·y on line 01 in Tab.1 modulo a simplifier according to Def.5 — even for input of
x
y

the error-pattern would be detected, see p.180.
The detection of error-patterns is costly in resources: the ∃ in Def.5 enforces to check all pat-

terns for an input formula, if this formula is not related to any error-pattern. All eight groups of
error-patterns listed on p.186 would comprise several hundred patterns.

Rewrite-rules are brought into the game as third element in an error-pattern, for instance in line
08 above: We want the student to do a correct step; however, a step is only correct if we have a
rewrite-rule for it. According to Def.4 rewrite-rules in a error-pattern have a left-hand-side (lhs)
matching the lhs of some patterns. Via the matching patterns an appropriate rewrite-rule is identified;
for instance, among the three rewrite-rules in error-pattern “add-fractions” there are two matching the
pattern in line 03 above, rat add1, rat add2:

rat add1 ::
?a

?c
+

?b

?c
=

?a+?b

?c

rat add2 ::
?a

?c
+

?b

?d
=

?a·?d+?b·?c
?c·?d

rat add3 :: ?a+
?b

?c
=

?a·?c+?b

?c

Fill-patterns are associated with rewrite-rules addressed in error-patterns, see Def.6. Fill-patterns
contain fill-in-patterns with space-holders. These are left blank when instantiated: for instance, in
Tab.1 line 00 the formula 5·x

4·y + 3·x
4·y matches line 03 of the error-pattern, as already mentioned. From

the error-pattern’s rewrite-rules rat add1 is selected, and rat add1’s fill-patterns are implemented in
SML as follows:

01 val fillpat =
02 [("fill-addition-first1",
03 parse_patt @{theory Rational} "(?a / ?c + ?b / ?c) = ( _ + _ ) / ( _ )",
04 ["add-fractions"]),
05 ("fill-addition-first2",
06 parse_patt @{theory Rational} "(?a / ?c + ?b / ?d) = ( _ + _ ) / (?c) ",
07 ["add-fractions"]),
08 ("fill-addition-first3",
09 parse_patt @{theory Rational} "(?a / ?c + ?b / ?d) = (?a + _) / (?c ",
10 ["add-fractions"]),
11 ...
12 ]: fillpat;

Here exactly those fill-in-patterns are shown, which generated the lines 03..05 in Tab.1; the
place-holders are represented as . It is imaginable to create the place-holders automatically. It is
noted, that the third element in a fill-pattern’s triple, e.g. "add-fractions" above, are provided for
future services for the dialogue not yet implemented.
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3.5 Implementation of Dialogue-Rules
Error-patterns and fill-patterns are implemented in ISAC’s mathematics engine (ME) which is ap-
propriate because they involve rewriting, a technique from Computer Mathematics. Dialogue-rules
are implemented in the Java-based part of ISAC, where the dialogue component resides, mediating
between the student working on the Worksheet (WS) and the ME, so it is called WorksheetDialog
(WD) 6. Fig.1 on p.185 shows a WS. The WD is, like all other dialogues, located on the same server
for all students probably working remotely and connected to the server via Internet. Fig.2 shows all
the relevant components.

Figure 2: Architecture of ISAC’s Dialogue

The behaviour of ISAC’s dialog is determined by dialogue-rules interpreted by Drools Expert
[Ama12], a knowledge-based expert system. These rules are triggered by events addressing the WD
on top from left and right, and the rules in the WD can determine actions directed towards left (WS)
and right (ME). The features of the arrows in Fig.2 are in more detail:

1. notifyUserAction notifies the WorksheetDialog about an action of the user on the Worksheet by
an EUIElement. For instance, in rule 2 the trigger is EUIElement ==

UI SOLVE HELP ENTERING FORMULA indicating that HELP has been pushed.

2. doUIAction notifies the Worksheet about what to display. This methods uses the same EU-
IElement as (1.) compound with appropriate data (i.e. the actions between WS (learner) and
WD (the ”system”) are symmetrical). The rules in the running example do not involve such
notifications, because fill-in-forms are passed to the WS by CalcChanged without intervention
of the WD.

3. calcResponse notifies the WorksheetDialog about the result of the MathEngine for the last re-
quest for calculation from the WorksheetDialog by a CalcEvent. This can be of 2 kinds:

(a) CalcChanged notifies about a successful step of calculation. This case occurs when an
error-situation is quit by a correct input which “changes the calculation” by adding a new
line. Since the dialogue cannot interpret formulas, CalcChanged passes formulas to the

6The Worksheet on the front-end is accompanied by further windows accepting user-input; these windows have their
own dialogues and are out of scope of this paper.
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WS bypassing the dialogue. Thus the rules concerning error-patterns are not triggered by
CalcChanged, but only by CalcMessage, see rule 1.

(b) CalcMessage notifies about a failure of the MathEngine trying to do the last requested step
of calculation. For instance, in rule 1 on line 03 an error-pattern is reported together
with an errorID, in the running example add-fractions.

4. IToCalc#methods request services from the MathEngine, which is addressed via interface ITo-
Calc, an abstraction of the calculation on the Worksheet with respective positions, formulas and
tactics/rules. For instance, rule 2 sets the action ME#requestFillformula(err patt,

fill patt).

5. Services from DialogGuide (DG) are access to hint-pages, update of counters etc. For instance,
rule 1 contains DG#showHintPage (err patt ).

The executable format of Drools’ rules involves distracting technicalities, so the rules below are
written in a pseudo-code which is both, comprehensible for a non-programmer (like a dialog-author)
and succinct enough for a programmer translating them to executable code 7.

01 rule "1: show a hint-page if an error-pattern is detected"
02 when
03 CalcMessage == "error-pattern#errorID#"
04 then
05 error_pattern_ = CalcMessage.getErrorPattern()
06 error_patterns_.add(error_pattern_)
07 DG#showHintPage (err_patt_)
08 DG#EP_counter (err_patt_) ++
09 help_counter_ = 0
10 WS#addHelpButton()
11 WS#removeNextAndAutoButtonForWorksheet()
12 end

Besides giving hints it is also important to involve students actively in the learning process, and
let them think. We don’t let them just request the next correct step or formula (see line 11 above), but
make them struggle a bit. However, line 10 adds a HELP button (see Fig.1) for requesting fill-forms.

01 rule "2: from ME request fill-patterns"
02 when
03 EUIElement == UI_SOLVE_HELP_ENTERING_FORMULA
04 then
05 fill_patts_ = ME#findFillpatterns(err_patt_)
06 fill_patt = DG#selectFillPattern(fill_patts_, help_counter_)
07 ME#requestFillformula(err_patt, fill_patt)
08 help_counter_ ++
09 end

rule 3 repeats the request for a fill-form. The DG knows which one to select from the help counter ,
see line 07 below. Finally, rule 4 proposes the tactics, i.e. the rule, leading to the correct next for-
mula.

7 The ISAC-project expects to develop a dialogue-language which copes with the need of both, authors and program-
mers, within one single format.
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01 rule "3: request other fill-form" 01 rule "4: fill-forms did not help,show rule"
02 when 02 when
03 CalcMessage == "fill-form incorrect" 03 ((CalcMessage)calc_event).getText()
04 && help_counter < length(fill_patts_) 04 == "fill-form incorrect"
05 then 05 && help_counter >= fill_pats_no
06 fill_patt = 06 then
07 DG#selectFillPattern(fill_patts_, 07 calc_tree.fetchProposedTactic();
08 help_counter_) 08 end
09 ME#requestFillformula(err_patt, fill_patt)
10 help_counter ++
11 end

Given the 37 dialogue-rules handling interactions with NEXT , AUTO , input of a formula, etc.
— the above 4 dialogue-rules are sufficient to extend ISAC’s dialogue behaviour in the decisive way
described in this paper.

The dynamic behaviour of the four rules is shown in Fig.3 . The reader may note, that the four
rules are neither specific for addition, nor fractions — they are general such that they handle all
domains of mathematics.

Figure 3: State-diagram of the dialogue-rules

4 Experiences from Prototyping and Future Work
The above case study extended the already general next-step-guidance with an equally general ma-
chinery handling error-patterns; this has immediate benefits and raises lots of opportunities for further
research and development.

Extension of machinery for user-guidance is generalised as follows:

1. A few additional lines of code (see p.186) provide automatic detection of an error-pattern wher-
ever a respective error occurs. Such additions are generally applicable: they refer to a particular
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set of theorems, and theorems are the means to justify any step of calculation in any topic of
mathematics. So the extended machinery generalises to all kinds of mathematics.

2. An additional error-pattern, for instance dealing with canceling fractions, carries over to any
re-use of the respective theorems in any other application. For instance, error-patterns imple-
mented for calculating with rationals, carry over to all calculations with rationals, because the
respective program code serves both (due to Lucas-Interpretation): (1) the creation of next-
step-guidance and (2) the re-use in programs on more advanced problems. So the machinery
generalises over all re-uses in the course of systematic build-up of mathematics without addi-
tional code for user-guidance.

3. Four dialog rules extended user-guidance by three adaptive system reactions: (1) show a hint-
page (and probably follow the links on this page), (2) suggest an incomplete next step (and
check respective input) and (3) propose the rule to be applied. These four rules can easily be
changed for other kinds of adaptive user-guidance; and, of course, the small number of rules
indicates best prerequisites for well-structured extension by many, many other rules. So the
dialog machinery generalises and scales to high complexity in accordance to future requests.

Counters are the first point raising questions for further research and development. Counters occur
in all of the rules in §3.5, see EP counter and help counter . However, nothing has been said
about these questions:

Which value does a counter start with? Always zero? If not zero, do counters take previous
sessions into account? What is the correlation between EP counter and help counter ? If
counters are stored for many sessions, what is relevant? Their average? Do these counters provide
information useful for user-guidance and for assessment?

These questions and others cannot be bypassed on the way to a user-model.

Recording user-actions is already implemented in ISAC: The EUIElements in Fig.2 represent
steps which promote the construction of a solution within a logical context and a user not aware of
the context will fail to do such a step — so these steps might be called “high-level”, closely related to
comprehensive mathematical activities.

So a history of user-actions is ready to be used for statistical analysis — but can the abundance of
data be seriously related to cognitive processes involved in mathematics [Cla05], to problem-solving
expertise? What structures and correlations can be expected from statistical analysis over large pop-
ulations? What about comparison of different populations?

Hint-pages can pop up due to adaptive user-guidance like in Fig.1 on p.185 — but there is HTML-
technology available with exciting new multimedia features (videos, pictures, diagrams, graphics...etc.).
These shall connect individual thinking with support for multiple representations, e.g. for fraction as
mentioned in §3.1. This aspect is important because according to [RJSA01] multiple representation
is key in the abstraction process.

Blended learning environments of a new kind can be assembled from components envisaged
above. This opens new possibilities for complex learning activities, for support for learning in a
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social environment, for involving the teacher (students are influenced of the teachers external rep-
resentation in both procedural and conceptual knowledge([Bil00]), and also the individual way of
thinking – people have individual strategies in solving mathematical problems and individual ways of
learning [RJSA01].

5 Conclusion
This paper reports the outcomes of a first cooperation between Cognitive Science and Computer
Mathematics in the ISAC-project. The outcomes are the following:

1. The case study performed does not claim to have immediately improved the benefits for students
from adaptive user guidance (thus the study does not feel obliged to confirm scientific progress
by evaluation of advances in some learning scenario).

2. Rather, the goal stated in §3.2 addresses improvement of existing machinery which evidently
advances generality of technology for user-guidance: “Generalise automated generation of user-
guidance with concurrent detection of errors recurring during systematic build-up of mathemat-
ics”. The accomplishment of that generalisation is described in detail on p.190 and exceeds the
state-of-the-art represented by the most advanced mathematics tutors as mentioned in §3.2.

3. Cooperation between Computer Mathematics (CM) and Cognitive Science (CS) leads to mu-
tual benefits: CM gets requirements from CS how to improve dialog machinery, and CS gets
realisable ideas for improving dialog-guidance (benefits which appear particularly fruitful with
respect to ISAC’s general machinery).

4. Experience gained in the case study described in this paper suggest further ideas for research
and development in interdisciplinary cooperation in §4.

5. Last not least a proof for improved reliability of a specific TP-based service in Computer Math-
ematics in §2.3, triggered as a requirement by Cognitive Science.

Finally, with current technological and theoretical background it would be really hard to understand
and find out the thoughts of the learner. The goal is to help/guide/support in the learning process,
reflect on errors, give information if requested, and encourage learners to solve problems on their
own. The technology used in this case study has the potential to support teaching mathematics —
also on individual level— what would be hard due to missing resources and time in a classroom.

So the authors look forward to inspire their respective communities, Cognitive Science and Com-
puter Mathematics, about the mutual benefits from future interdisciplinary cooperation for an upcom-
ing generation of TP-based educational mathematics assistants.
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